

Hazardous Locations - an Overview

Simplifying Complexity. Delivering Safety.

HYDROGEN
SAFETY
FORUM
Lunch & Learn 1
Monday 7th Dec 2020
12:30 – 13:30 GMT

Objectives

As a result of this presentation, you will be able to:

- Understand the definition of hazardous areas
- Identify the main characteristics for safety compliance
- Appreciate the methods of protection available
- Feel confident about developing product & systems for such applications

DSEAR

- Created after 94/92/EC ATEX "Workplace" Directive
- Dangerous Substances and Explosive Atmospheres Regulations 2002
- Requires duty holder (employer & self-employed persons) to protect people (workers & public) from risks to their safety as a result of workplace activity.
- You must:
 - Identify dangerous substances & their risks
 - Remove substances or take other actions to mitigate risk
 - Prepare plans & procedures to deal with accidents & emergencies
 - Inform & train employees about the risk
 - Identify & classify plant areas (Zoning) and implement measures to prevent ignition
- DSFAR ACOP available as a PDF

Approved Codes of Practice

- DSEAR ACOP is issued by Health & Safety Executive (HSE)*
- When properly followed, usually sufficient to demonstrate compliance with the law
- When not followed, demonstration of compliance with DSFAR is much more difficult.
- HSE Inspectors seek to demonstrate compliance or noncompliance with the law and use ACOP as their yardstick.

* https://www.hse.gov.uk/pubns/books/I138.htm

Hazardous Area Classification (HAC) Xexpo Technologies

- Hazardous area: where an explosive atmosphere may occur in quantities that require special precautions to protect the health and safety of workers.
- Non-hazardous area: where an explosive atmosphere is not likely to occur in quantities that require special precautions to protect the health and safety of workers.
- Assessment considers the likelihood of releases of explosive atmospheres and the **potential quantity** of such releases when considering area classification.
- "Special precautions" means precautions to control potential ignition sources within a hazardous area, particularly in relation to the construction, installation and use of equipment.

Definitions of Zones

Zone O (gas) / Zone 20 (dust)

- An area/volume where a potentially explosive atmosphere is present continuously or for a very significant portion of time
- Industry Estimate: >1000 hr/year

Zone 1 (gas) / Zone 21 (dust)

- An area/volume where a potentially explosive atmosphere is likely during normal operation
- Industry Estimate: 10 1000 hr/yr

Zone 2 (gas) / Zone 22 (dust)

- An area/volume where a potentially explosive atmosphere is not likely during normal operation, and if present due to fault, will only persist for a short time.
 - Industry Estimate <10 hr/yr

Note: timings shown are not officially adopted but are commonly used – see HSE website Technical Measures document on HAC and Control of Ignition Sources

Hazardous areas - IEC

IEC 60079-10-1 "Area Classification – Gas"

Hazardous areas - NEC

Explosion Triangle

Explosion requires:

- Fuel
- Oxidiser
- Ignition source

Explosion protection

• Elimination or control of one or more of these elements

Potential ignition sources

- Flames
 - Direct fired space and process heating
 - Use of cigarettes/matches etc
 - Cutting and welding flames
- Hot surfaces;
 - Heated process vessels
 - Space heating equipment
- Mechanical machinery
 - Friction heating or sparks
 - Impact sparks
- Spontaneous heating

- Electrical equipment and lights
- Sparks from electrical equipment;
 - Stray currents from electrical equipment
 - Electrostatic discharge sparks
- Lightning strikes.
- Electromagnetic radiation of different wavelengths
- Vehicles, unless specially designed
- Optical fibres

ATEX "Product" Directive

- ATEX 2014/34/EU (was 94/9/EC)
 - To enable equipment manufacturers & users to more easily demonstrate the measures taken in their design, manufacture & use of equipment
 - Not proscriptive, but requires use of standards
- ATEX approval is by Notified Bodies (state registered but independent organisations accredited as being experts in the field)
- Marking of ATEX approvals allows free trade across national borders within EU
- Post-BREXIT, most manufacturers will still need ATEX compliance for sales into the EU, and EPS compliance will be required for UK sales (will be based on identical standards until technical divergence).

Post BREXIT internal UK market

- ATEX Directive replaced by EPS
 - Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2019
- UKCA mark
 - CE still allowed to end 2021, thereafter UKCA mark required
- Notified Body (EU) replaced by UK Approved Body
- Declaration to UK recognised standards (BS EN 60079-0 etc)
- UK Type Examination Certificate
- UK QAN Quality System

Protection by design

- Give consideration to alternative design that eliminates risk
- Where risk is unavoidable, consider
 - Likelihood of release
 - Ventilation to atmosphere (below flammable limit)
 - Potential collection points
 - Complete Zone diagram of plant or location
 - Device power requirements
 - Select appropriate protection concept
 - Match concept to Zone & practicality of use
- Complete Technical File
 - Demonstrates that designers have taken account of foreseeable risk

Methods of Protection - electrical

•	Eliminate .	/ Control	Ignition
---	-------------	-----------	----------

 Flameproof 	IEC 60079-1	strong box, tight seals
 Intrinsic safety 	IEC 60079-11	very low power
 Increased safety 	IEC 60079-7	no hot spots
 Sand filling 	IEC 60079-5	quenching arcs

• Eliminate / Control Fuel

 Purge & pressurization 	IEC 60079-2	well below LEL
Liquid filling	IEC 60079-6	sealed, allows moving parts
 Encapsulation 	IEC 60079-18	sealed around static parts

• Eliminate / Control Oxidiser

•	Purge with inert gas	IEC 60079-2	eliminate oxygen
---	----------------------	-------------	------------------

Properties of Hydrogen Gas

- Very low molecular weight/specific gravity
 - 0.071 g/l at 0°C and 1 atm.
 - 0.0695 specific gravity (relative density to air)
- Very easy to ignite by spark
 - 19 µ
- Not so easy to ignite by hot surface
 - Auto-ignition temp 560°C acc. IEC 60079-20:2000
- Ignition by corona discharge
 - Identified where hydrogen was vented to atmosphere under certain atmospheric conditions
 - High pressure releases almost always ignite

Hydrogen Compressor

HV Motor driving a compressor

- Compressor demands high power prime mover
- High voltage supply makes high power motor efficient
- HV motor is in hazardous area

Objectives restated

- Understand the definition of hazardous areas.
- Identify the main characteristics for safety compliance
- Appreciate the methods of protection available
- Feel confident about developing product & systems for such applications

Thank you for your attention.

Simplifying Complexity. Delivering Safety.

